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Abstract Here, large-scale and uniform hexagonal zinc oxide (ZnO) nanosheet films were deposited onto indium tin

oxide (ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Com-

pared with other commonly used solution methods, this process avoids high temperature and electric power as well as

supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal

wurtzite structure. The photoelectrochemical (PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also

fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of

*500 lA cm-2 under AM 1.5 G simulated illumination of 100 mW cm-2 with zero bias potential (vs. Ag/AgCl elec-

trode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered ZnO nanosheet arrays. Our

developed method may be used to deposit other oxide semiconductors, and the ZnO nanosheet film/ITO PEC cell can be

used to design low-cost optoelectronic and photoelectrochemical devices.

Keywords Zinc oxide � Nanosheet film � Self-assemble � Galvanic displacement method � Photoelectrochemical property

1 Introduction

Over the past decades, there has been an increasing sci-

entific interest in oxide semiconductors (such as TiO2,

ZnO, Fe2O3, CuO, NiO, and so on) [1–3], because of their

numerous potential technological applications, including

photovoltaic device [4], lithium ion battery [5], photo-

catalysis, and optoelectronic device [6, 7]. Among the

oxide semiconductors, ZnO as a prototypical n-type con-

ducting oxide has attracted considerable attentions for wide

usages in piezoelectric device, ultraviolet optoelectronics

detectors [8, 9], low-cost dye-sensitized solar cells [10],

gas sensors [11, 12], photocatalysis, and photoelectro-

chemical (PEC) devices [13, 14]. Most of these applica-

tions are based on the advantages of its abundance, low

cost, non-toxicity, chemical stability and the possibility of

growing ordered nanostructures, and strong exciton bind-

ing energy [15]. Especially, nanostructured ZnO exhibits

enhanced performance and provided an ideal system to

study the influence of surface effects and interface science

on photoelectrochemical properties due to their large sur-

face-to-volume ratios [16–18].

To date, ZnO and other nanostructured materials have

been assembled and studied by various methods and means

[19–22], including magnetron sputtering [23], chemical

vapor deposition [24], hydrothermal process [25], electro-

chemical deposition [26–28], electroless deposition [29,

30], and other combination of methods [31]. Among all

these techniques, electroless deposition presents several
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advantages such as low cost, large-scale deposition, and

low-temperature processing. Here, we explored a facile

solution-based galvanic displacement deposition technique

to self-assembly synthesis uniform hexagonal ZnO

nanosheet film on ITO glass substrate under ambient con-

ditions. ZnO nanosheet film/ITO PEC cell and its photo-

electrochemical property were also investigated.

2 Experimental Details

2.1 Synthesis of the ZnO Nanosheet Films

Compared with other common electrodeposition methods,

an electroless deposition process was employed to fabricate

ZnO nanosheets. A typical galvanic cell system with two

half-cells (A and B) was used to generate a current by

coupling oxidation and reduction reactions in a sponta-

neous process, in which the A cell solution is 5–15 mM

ZnSO4 and the B cell solution is 0.25 M NaOH. The two

half-cells were connected by a porous salt bridge that

supplied ions to maintain charge neutrality during current

flow. The galvanic cell deposition system is composed of

Al sheet (99.99 % purity) and ITO conducting glass (sheet

resistance of 10 X cm-2), which acted as anode and

cathode, respectively. The two electrodes were short-cir-

cuited externally through a metal copper wire. Before

deposition, 4 cm 9 2 cm Al sheet and ITO glass were,

respectively, cleaned in acetone, ethanol, and deionized

water for 5 min. Then, the Al sheet was immerged into A

cell solution and the ITO glass was immerged into B cell

solution without stirring and oxygen gas bubbling at room

temperature. In order to obtain higher crystal quality, the

as-prepared samples were annealed at 550 �C for 60 min

with the increasing rate of 10 �C min-1 in an air

atmosphere.

2.2 Characterization

The surface morphology of the as-deposited ZnO

nanosheet films was obtained by field emission scanning

electron microscopy (FE-SEM; FEI Sirion 200, Holland).

A D8 ADVANCE DA VINCI X-ray diffractometer (XRD,

Bruker, German) was employed to verify the crystal

structure of the samples using Cu Ka radiation

(k = 0.15418 nm) with a scanning rate of 5� min-1. The

photoluminescence (PL) spectrum of the as-resulting ZnO

films was obtained using the Jobin–Yvon LabRam HR

800 UV system with a 325-nm laser at room temperature.

The UV–Vis spectra of the ZnO samples were obtained

through UV–Vis spectrophotometer (PerkinElmer

Lambda 950, America).

2.3 PEC Cell Preparation and PEC

Characterization

PEC cell was fabricated by placing a copper wire onto a

bare portion of the ITO conducting substrate and securing

with high-purity silver conducting glue. Then, the part

active area of ZnO nanosheet films was sealed with epoxy

resin leaving an exposed working electrode surface area of

1 cm 9 1 cm. An electrochemical workstation (Princeton

Applied Research, PARSTAT 4000, America) was used to

study the photoelectrochemical property of the samples.

The photoelectrochemical experiment was performed in a

conventional three electrode, in which the resulting ZnO

nanosheet film/ITO substrate acted as working electrode

(illuminating area of 1 cm2), a platinum net (surface area

of 1 cm2) as counter electrode, and an Ag/AgCl as refer-

ence electrode. The PEC experiments were carried out in a

mixture solution of 0.35 M Na2S and 0.25 M Na2SO3

under AM 1.5 G (100 mW cm-2) simulated illumination,

which was provided by a 300 W xenon lamp (Beijing

Perfectlight Technology, PLS-SXE300C, China) equipped

with an AM 1.5 filter. The illumination intensity was

measured with a solar simulator spectroradiometer (EKO

instrument, LS-100, Japan).

3 Results and Discussion

The schematic drawing of the experimental setup used for

the fabrication ZnO nanosheet films is shown in Fig. 1.

When the Al electrode, connected with the ITO glass

externally, was dipped into the NaOH solution, Al3? ions

formed in the solution due to the dissolution of Al foil.

Then, the released electrons moved through the externally

short-circuited path to the ITO electrode. At the same time,

the electron prompted the basic electrochemical reduction

of oxygen (O2) in the aqueous solution, and then led to the

formation of OH- ions on ITO substrate surface. Finally,
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Fig. 1 The schematic drawing of the experimental setup used for the

fabrication of hexagonal ZnO nanosheet films
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the Zn2? ions in the solution were attracted by the corre-

sponding OH- ions on the ITO surface, and an interme-

diate Zn(OH)2 was formed and rapidly converted to ZnO.

The growth mechanism of ZnO nanosheet film has similar

electrochemical reaction with the electrodeposition [32].

The reactions may be as follows:

Anode: Al0 sð Þ ! Al3þ aqð Þ þ 3e�

Cathode: O2 þ 2H2O aqð Þ þ 4e� ! 4OH�

Zn2þ aqð Þ þ 2OH� ! Zn OHð Þ2! ZnO sð Þ þ H2O:

In the process of nanosheet film formation, ZnO

nanocrystals were primarily generated and then they were

self-assembled into ordered hexagon nanostructure. These

staggered arrangement nanosheet formed ZnO film in the

substrate surface finally. Actually, semiconductor self-

assembly is a complex phenomenon that depends on the

interplay of several physical factors and competing inter-

actions of different nature. A thorough understanding of the

self-assembly mechanism of nanocrystals to organize into

ordered nanostructure is one of the keys of future

nanoscience [33].

Figure 2 shows FE-SEM images of the top and side

view of the hexagonal ZnO nanosheet films grown on the

ITO substrate at 5 and 10 mM ZnSO4 aqueous solution for

2 h, and annealed at 550 �C for 1 h. One can see that the

ZnO had quite perfect hexagon and large-scale irregular

arrangement. The samples shown in Fig. 2a, b were,

respectively, grown at 5 mM ZnSO4 solution and 10 mM

ZnSO4. It can be seen that the concentration of ZnSO4

aqueous solution plays an important role in the size and

thickness of hexagonal ZnO nanosheets, as well as the

surface-to-volume ratios.

Figure 3 shows XRD pattern of the hexagonal ZnO

nanosheet films on ITO by electroless depositing at

7.5 mM ZnSO4 for 2 h under room temperature and post-

annealing at 550 �C for 1 h in open air conditions. All

diffraction peaks correspond to the standard diffraction of a

hexagonal wurtzite ZnO crystal (JCPDS 36-1451) [34].

The major diffraction peaks have sharp features, corre-

sponding to the (100), (002), (101), (102), (110), (103), and

(112) planes, which is due to the disorder arrangement of

ZnO nanosheets on the ITO. At the same time, the peaks

from the ITO conducting substrates were observed as well.

Figure 4 exhibits the representative room temperature

PL spectrum of the ZnO nanosheet films grown in 7.5 mM

ZnSO4 aqueous solution and annealed at 550 �C for 1 h. A

laser with wavelength of 325 nm was used as the excitation

source. The strong UV emission peak at about 390 nm

could be usually attributed to the free exciton emission

from the wide band-gap ZnO [35]. The lower broad peak

around 500 nm is usually considered to be the recombi-

nation of a photogenerated hole with the single ionized

charged state of the defect in ZnO and could be related to

the surface oxygen vacancies of the ZnO because the ZnO

nanosheet films have much high surface-to-volume ratios

[36]. The PL spectrum result indicates that the as-prepared

ZnO has few defects [37]. The inset image in Fig. 4 shows

the UV–Vis absorption spectrum of this sample, indicating

Fig. 2 FE-SEM images of the as-prepared hexagonal ZnO nanosheet films grown on the ITO-coated glass substrate with different concentrations

of ZnSO4. a 5 mM and b 10 mM, top view. c 10 mM, side view
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Fig. 3 XRD pattern of the as-annealed hexagonal ZnO nanosheet

film at 550 �C in open air conditions
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its band gap at nearly 3.25 eV. The band-gap values of

ZnO film were calculated by Tauc plot [38, 39].

The photoelectrochemical property of ZnO nanosheet

thin film/ITO electrode was measured with an electro-

chemical workstation. All PEC measurement was carried

out in a mixture solution of 0.35 M Na2S and 0.25 M

Na2SO3 under AM 1.5 G (100 mW cm-2). Figure 5 shows

the photoelectrochemical property of ZnO nanosheet thin

film/ITO electrode. Its photocurrent was investigated under

a bias voltage of 0 V (vs. Ag/AgCl) with a light on–off

interval of 20 s, as shown in Fig. 5a. All PEC cell exhibits

significant photoresponse under a bias voltage of 0 V (vs.

Ag/AgCl), but the sample fabricated at 7.5 mM solution

has superior characteristics with a higher photocurrent of

500 lA cm-2. The photocurrent density of the photoelec-

trode varies with the different growth concentrations of

ZnSO4 aqueous solution, which may be related to the

resistance and surface-to-volume ratio of the samples that

could affect the light absorption. Linear sweep voltam-

mograms (LSV) curves were recorded for the 7.5 mM

sample in the dark and at 100 mW cm-2 (AM 1.5) with a

scan rate of 10 mV s-1 in the applied potentials from -1 to

?1 V (vs. Ag/AgCl), as shown in Fig. 5b. The dark scan

shows a very small current density in the range of

10 lA cm-2, whereas under light illumination a pro-

nounced photocurrent density was observed, implying
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Fig. 4 Room temperature photoluminescence spectrum of the as-

prepared ZnO nanosheet film. Excitation wavelength: 325 nm. The

inset picture is the UV–Vis absorption spectrum of the same sample
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Fig. 5 The photoelectrochemical properties of the ZnO nanosheet thin film/ITO electrode. a Chronoamperometry measurements at zero bias

potential (vs. Ag/AgCl electrode) under chopped light illumination with a light on–off interval of 20 s. b LSV curves recorded for the 7.5 mM

sample with a scan rate of 10 mV s-1 in the applied potentials from -1 to ?1 V (vs. Ag/AgCl). c The J - T stability of electrode. All PEC

experiments were carried out in a mixture solution of 0.35 M Na2S and 0.25 M Na2SO3 under AM 1.5 G (100 mW cm-2)
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efficient charge separation and transfer in this nanostruc-

tured ZnO. Figure 5c shows the chronoamperometric plots

of the ZnO/ITO electrode for about 1 h, which indicated

that the photoelectrochemical property was fairly

stable under illumination. The photocurrent did not obvi-

ously decrease which is very important for the develop-

ment of practical PEC cells.

In order to further understand the photoelectrochemical

property of ZnO nanosheet films, the UV–Vis reflectance

spectra were also measured by PerkinElmer Lambda 950

UV–Vis spectrophotometer. Figure 6 shows the UV–Vis

reflection spectra of the ZnO nanosheet films grown at

different concentrations of ZnSO4. It can be seen that the

7.5 mM sample had a maximum ultraviolet absorption

compared to other samples. The reflectance spectra result

was consistent with the photoelectrochemical result. These

results clearly demonstrated that the PEC performance

strongly depended on the morphology of ZnO and could be

optimized through controlling the material growth

condition.

4 Conclusion

In this paper, we had presented a simple and highly effi-

cient solution-based method to prepare large-scale hexag-

onal ZnO nanosheet films using a galvanic displacement

reaction. The advantages of this solution-processing tech-

nique are its simplicity as well as it does not need electric

power and supporting agents. The hexagonal ZnO

nanosheet films prepared by this method exhibited excel-

lent PEC properties. These results indicated that the ZnO

nanosheet film could be applied in low-cost, high-perfor-

mance photoelectrochemical devices or other application

fields.
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Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive
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